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Abstract 

The sources and characterization of uncertainties in engineering modeling for risk and reliability analy-

ses are discussed. While many sources of uncertainty may exist, they are generally categorized as either 

aleatory or epistemic. Uncertainties are characterized as epistemic, if the modeler sees a possibility to 

reduce them by gathering more data or by refining models. Uncertainties are categorized as aleatory if 

the modeler does not foresee the possibility of reducing them. From a pragmatic standpoint, it is useful 

to categorize the uncertainties within a model, since it then becomes clear as to which uncertainties 

have the potential of being reduced. More importantly, epistemic uncertainties may introduce depend-

ence between events, which may not be properly noted if their character is not correctly modeled. Influ-

ences of the two types of uncertainties in reliability assessment, codified design, performance-based 

engineering and risk-based decision-making are discussed. Two simple examples demonstrate the influ-

ence of statistical dependence arising from epistemic uncertainties on systems and time-variant reliabil-

ity problems.   

 

1. Introduction 

The nature of uncertainties and the manner of dealing with them has been a topic of discussion by stat-

isticians, engineers and other specialists for a long time (see, e.g., Paté-Cornell 1996, Vrouwenvelder 

2003, Faber 2005). This paper attempts to reopen that discussion in the context of structural reliability 

and risk analysis one more time. It is unlikely that this paper will bring a closure to that discussion. Yet, 

we hope that it will shed some light on the topic as it relates to such issues as assessment of structural 

reliability, codified design, performance-based design and risk-based decision-making. In particular, we 

will consider systems reliability and time-variant reliability problems, for which proper treatment of 

uncertainties is more crucial than for time-invariant component reliability problems. We argue that the 

nature of uncertainties and how one deals with them depends on the context and the application.  

 

Engineering problems, including reliability, risk and decision problems, without exception, are solved 

within the confines of a model universe. This universe contains the set of physical and probabilistic 

models (or sub-models), which are employed as mathematical idealizations of reality to render a solu-
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tion for the problem at hand. The model universe may contain inherently uncertain quantities; further-

more, the sub-models are invariably imperfect giving rise to additional uncertainties. Therefore, an im-

portant part of building the model universe is the modeling of these uncertainties. Any discussion on 

the nature and character of uncertainties should be stated within the confines of the model universe. 

 

While there can be many sources of uncertainty, in the context of modeling, it is convenient to catego-

rize the character of uncertainties as either aleatory or epistemic. The word aleatory derives from the 

Latin alea, which means the rolling of dice. Thus, an aleatoric uncertainty is one that is presumed to be 

the intrinsic randomness of a phenomenon. Interestingly, the word is also used in the context of music, 

film and other arts, where a randomness or improvisation in the performance is implied. The word epis-

temic derives from the Greek επιστηµη (episteme), which means knowledge. Thus, an epistemic uncer-

tainty is one that is presumed as being caused by lack of knowledge (or data). The reason that it is con-

venient to have this distinction within an engineering analysis model is that the lack-of-knowledge-part 

of the uncertainty can be represented in the model by introducing auxiliary non-physical variables. 

These variables capture information obtained through the gathering of more data or use of more ad-

vanced scientific principles. An uttermost important point is that these auxiliary variables define statis-

tical dependencies (correlations) in a clear and transparent way.  

 

Most problems of engineering interest involve both types of uncertainties. In the modeling phase, some-

times it may be difficult to determine whether a particular uncertainty should be put in the aleatory 

category or the epistemic category. It is the job of the model builder to make the distinction. The choice 

the model builder makes is, of course, conditioned on the general state of scientific knowledge, but 

much more on the practical need for limiting the sophistication of the model to a level of significant 

engineering importance for the decisions yielding from the model.  

 

To provide a context for the following discussion, we consider the model universe for a structural reli-

ability or risk analysis problem that involves a set of input variables ),,( 1 nxx K=x  that take values as 

outcomes of a corresponding set of basic random variables ),,( 1 nXX K=X , a parameterized probabil-

istic sub-model ),( ff ΘxX  describing the distribution of the random vector X , and a set of parameter-

ized physical sub-models ),( gii gy Θx= , mi ,,2,1 K= , describing relations between the quantities x  

and m  derived quantities ),,( 1 myy K=y , which are employed in modeling the reliability or risk prob-

lem under study. The random variables X  are called basic because we assume they are directly observ-

able and, hence, empirical data is available for them. They may represent such quantities as material 

properties (strength, ductility, toughness, fatigue life, etc.), load characteristics (e.g., earthquake magni-

tude, wind velocity, wave height), other environmental effects (e.g., temperature, concentration of tox-

ins, amount of pollution), and geometric dimensions (e.g., cross sectional sizes, location of supports, 

out-of-straightness). The derived variables y  usually are not directly observable, except in laboratory 

or field studies aimed at model development. Engineering performance criteria usually are described in 

terms of such derived quantities, e.g., stresses, deformations, stability limits, measures of damage, loss, 

downtime, concentration of toxins in downstream waters. The sub-models ),( ff ΘxX  and ),( gig Θx , 

,2,1=i  m,K , are invariably imperfect mathematical idealizations of reality and contain uncertain er-

rors. Their parameters, fΘ  and gΘ , are usually assessed through a process of “fitting” these sub-

models to observed data. 

 

Most problems in reliability or risk analysis involve the above elements. Throughout this paper we will 

use these elements to discuss the modeling of uncertainties and to assess their relevance to risk and re-

liability evaluation in different application contexts. 
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2. Sources of uncertainty 

In the context of the problem described above, one can identify the following sources of uncertainty: 

1. Uncertainty inherent in the basic random variables X , such as the uncertainty inherent in material 

property constants and load values, which can be directly measured. 

2. Uncertain model error resulting from selection of the form of the probabilistic sub-model ),( ff ΘxX  

used to describe the distribution of basic variables. 

3. Uncertain modeling errors resulting from selection of the physical sub-models ),( gig Θx , 

mi ,,2,1 K= , used to describe the derived variables. 

4. Statistical uncertainty in the estimation of the parameters fΘ  of the probabilistic sub-model. 

5. Statistical uncertainty in the estimation of the parameters gΘ  of the physical sub-models. 

6. Uncertain errors involved in measuring of observations, based on which the parameters fΘ  and  gΘ  

are estimated. These include errors involved in indirect measurement, e.g., the measurement of a quan-

tity through a proxy, as in nondestructive testing of material strength. 

7. Uncertainty modeled by the random variables Y  corresponding to the derived variables y , which 

may include, in addition to all the above uncertainties, uncertain errors resulting from computational 

errors, numerical approximations or truncations. For example, the computation of load effects in a 

nonlinear structure by a finite element procedure employs iterative calculations, which invariably in-

volve convergence tolerances and truncation errors. 

  

3. Categorization of uncertainties 

In this section, we discuss the categorization of each of the uncertainty sources described above. 

3.1. Uncertainty in basic variables 

Consider a basic random variable X  describing a material property constant, such as the compressive 

strength of concrete. Should the uncertainty in X  be categorized as aleatory or epistemic? The answer 

depends on the circumstances. If the desired strength is that of the concrete in an existing building, then 

the uncertainty should be categorized as epistemic if it is decided that specimens taken from the build-

ing can be tested, yielding information about the strength. The testing may, of course, involve random 

errors of measurement, particularly if non-destructive methods are used. This measurement uncertainty 

should also be categorized as epistemic, if there is possibility of considering alternative methods of 

measurement. On the other hand, the uncertainty in the strength of concrete in a future building should 

be categorized as aleatory, if there will be no attempts to make more detailed modeling related to the 

control of the concrete production, for example. Until the building has been realized, no amount of test-

ing will reduce the variability inherent in the strength of concrete of the future building.  

 

The situation with demand (load) variables is somewhat different, as in assessing the reliability of both 

existing and future buildings, one is usually interested in future realizations of demand values. Hence, in 

this context, the uncertainty in basic demand variables is usually categorized as aleatory. 

 

It is important to reiterate the difference between basic and derived variables. This is a choice made by the 

modeler, usually following standard engineering practice. Consider, for example, the annual maximum 

wind velocity, which may be of interest in designing a tower. The modeler may choose to consider this 
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quantity as a basic variable, in which case he/she would fit a probabilistic sub-model, possibly selected 

from some standard recommendation, to empirically obtained annual maximum wind velocity data. Alter-

natively, if such data are not available, the analyst may choose to use a predictive sub-model for the wind 

velocity derived from more basic meteorological data. In that case, the annual wind velocity is a derived 

variable of the form ),( ggy Θx= , where x  denotes the input meteorological variables and ),( gg Θx  

denotes the predictive sub-model of the wind velocity. The categorization of uncertainties in a derived 

variable is described below as a part of model uncertainty. As we will see, the uncertainty in a derived 

variable may be categorized as a combination of aleatory and epistemic uncertainties. 

 

The arbitrariness in the choice of variables as basic or derived when building the analysis model sug-

gests that the categorization of uncertainties in a problem depends on our choice of sub-models. By use 

of sub-models, we rely on empirical data on further basic variables, or sometimes on a priori probability 

assignments. A good example arises in seismic hazard analysis. Here, the interest is in the intensity of 

potential earthquake ground motions at a site, a demand variable. Since empirical data on the intensities 

of ground motions experienced at a specific site are hard to get, the common practice is to relate the 

intensity measure to the earthquake magnitude, for which empirical data is available, and to distance, 

for which an a priori sub-model can be used, e.g., the earthquake can be assumed to be equally likely to 

occur anywhere along an active fault. This is done through an “attenuation” law, which can be viewed 

as a predictive sub-model of ground motion intensity. In this formulation the ground motion intensity 

becomes a derived variable, whereas the basic variables are the earthquake magnitude and distance. In 

making this sub-model choice, we introduce additional uncertainties, which can have both aleatory and 

epistemic components, as described in the following section. 

 

It is worth noting that the different categorization of uncertainties in an existing versus a future building 

dictates a fundamental difference in the methods used for assessing their reliabilities. For an existing 

building, the reliability assessment should aim at evaluating the reliability conditioned on the known his-

tory of the building. For example, the knowledge that the building has survived an earthquake of known 

intensity can be used to truncate the lower tail of the strength distribution. As more information is gath-

ered, the uncertainty in the assessment decreases. In essence, this is a problem of information updating, for 

which Bayesian techniques are ideally suited. On the other hand, the problem of assessing the reliability of 

a future building, say during the design process, is one of determining the state of a random sample taken 

from a population. After all reasonable control measures have been taken into account, no updating with 

direct information can be performed until the building has been realized. This distinction in assessing the 

reliability of an existing versus a future structure has often been missed in the literature on structural reli-

ability.  

3.2. Model uncertainty 

Consider a physical quantity y , which is uniquely determined in terms of two sets of basic variables x and 

z. We wish to develop a mathematical model (or sub-model) to predict y. Very often the exact form of the 

relationship between y and ),( zx  is unknown. Furthermore, the modeler may not be aware of the depend-

ence of y on z, or for reasons of pragmatism he/she may not wish to include these variables in a predictive 

model of y. For example, it may be practically impossible to gather data on the variables z and, therefore, 

including them in the model would not be useful. 

  

As a specific example, consider the ground motion intensity attenuation model described above. We are 

well aware that the intensity at a site is dependent, in addition to the earthquake magnitude and distance, 
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on such variables as the propagation velocity of the fault rupture, the mechanical characteristics of the path 

of propagation of seismic waves, the geologic features surrounding the site, and so on. However, from a 

pragmatic standpoint, it is difficult if not impossible to measure these variables for a given site. Therefore, 

we exclude them in the attenuation model. These variables, as well as others of which we may not be 

aware, constitute the missing variables z in the ground motion attenuation model that is expressed only in 

terms of the earthquake magnitude and distance, which constitute the vector of basic variables x for the 

model.   

 

The predictive model of y may be written in the form 

ε),(ˆ += ggy Θx   (1) 

where ),(ˆ gg Θx  is an idealized mathematical model involving the basic variables x  with gΘ  as its pa-

rameters, and ),(ˆε ggy Θx−=  is the model error (the residual). The parameters gΘ  are usually esti-

mated through statistical analysis of the model against observed data on y  and x . It is noted that, while 

it may be difficult to observe y  for the particular risk analysis problem of interest, paired observations 

of y  and x  are necessary to assess the model in (1). These observations are usually conducted under 

special laboratory or field studies aimed at model development. 

 

The model error ε  has two components: (a) the effect of the missing variables z , which are absent in 

the model, and (b) the effect of the potentially inaccurate form of the model. For example, the relation-

ship between y  and x  could be nonlinear, while the model may use a linear form. Since these effects 

are uncertain, ε  is modeled as a random variable. Usually, one is interested in an unbiased model. In 

that case, parameters gΘ  are determined by setting the mean of ε  equal to zero. Furthermore, by a 

proper transformation of the model, it is often possible for ε  to have a normal distribution with its 

standard deviation εσ  – a measure of the inaccuracy of the model – being independent of x . This is 

known as the homoskedastic form of the model (Box and Tiao 1992). Thus, in order to completely de-

fine the model, the set of model parameters to be estimated is )σ,( εgΘ . When more than one sub-

model is involved, in addition to all the parameters gΘ  and the standard deviation εσ  for each sub-

model, one will need to also determine the correlation coefficients between the error terms for different 

sub-models. 

 

We now examine the nature of the uncertainties in the model of the form in (1). As explained above, ε  

accounts for the uncertain effects of the missing variables z  as well as the potentially inaccurate form 

of the model. Both these uncertainties can be reduced if the model is refined to include one or more of 

the missing variables and/or mathematical expressions (analytical or algorithmic), which provide a bet-

ter approximation to the correct form. In this sense, the uncertainty in ε  is categorized as at least partly 

epistemic. However, our limited state of scientific knowledge may not allow us to further refine the 

model form and our inability to measure the missing variables may preclude the possibility of expand-

ing the model. In such cases, at least a portion of the uncertainty in ε  is categorized as aleatory. In par-

ticular, the part of the uncertainty in ε  that arises from the effect of the missing variables is reasonably 

categorized as aleatory if these variables, though unknown, are characterized as being aleatory random 

variables. 

 

We now turn to the probabilistic model (or sub-model) ),( ff ΘxX . This model is normally selected by 

fitting a theoretical distribution to available data. Various methods for evaluating goodness of the fit are 
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available. However, when events with small probabilities are of interest, as is the case in most structural 

reliability and risk problems, the tail of the probability distribution becomes important. Unfortunately, 

standard goodness-of-fit tests do not guarantee accuracy of the fit in the tail. For example, Ditlevsen 

(1994) has shown that equally well-fitted distributions can lead to significantly different probability 

estimates. Therefore, in computing probabilities, particularly for rare events, an error of uncertain mag-

nitude arises from the assumed distribution model. This error can be placed in the epistemic category, 

since gathering of more data would allow a better fit of the distribution and, therefore, a reduction in 

the model uncertainty. However, unlike the case of physical models described above, it is difficult to 

assess the magnitude of the error arising from the choice of a distribution model. A logical way to do 

this would be to compute the probability of interest for all viable distribution models and assess the 

variability in the computed probability values. A second approach, suggested in Der Kiureghian (1989), 

is to parameterize the choice of the distribution. The uncertainty in the distribution model is then repre-

sented by the uncertainty in the parameter. However, both these approaches are demanding of large 

amounts of analysis. 

 

The arbitrariness in the choice of the distribution model and the “tail-sensitivity” of small probabilities 

has lead to the recommendation that probabilistic structural design codes standardize probability distri-

butions for load and resistance quantities (Ditlevsen and Madsen, 1989). One point of view is that in 

such a construct the computed probabilities should be considered as notional values and that caution 

should be exercised in using them in an absolute sense, e.g., for computing the expected costs of rare 

events. However, this view assumes that absolute probability exists as a physical entity outside the 

mathematical model by which it is computed. 

 

It is only in very special problems, where one can think of the probability of an event as the relative 

frequency of the physical occurrence of the event in a long series of independent repetitions of an un-

changed experiment, in which the event can occur. In the field of structural safety, several highly im-

portant sources of uncertainty do not exhibit such a repetitive behavior under identical circumstances. 

One can safely state that the interpretation of the stable long run occurrence frequency as an absolute 

probability in the physical sense belongs to utopia. Consequently, the usefulness of the probability con-

cept must rest on another rational foundation. However, as a mind construct (and a simulation tool) the 

relative frequency interpretation of a mathematical probability is decisive for its usefulness as a degree 

of belief regarding the occurrence of an event. To make a probabilistic degree-of-belief model subject 

to a pragmatic test of falsification (a concept by Matheron based on Popper), and thus defensible as an 

objective tool, it is necessary that some type of relative frequency behavior be associated with the prob-

abilistic model. A detailed discussion of the philosophy of this objectivity issue is given in Ditlevsen 

and Madsen (1996). 

 

The mentioned codification of selected probability distributions should be seen as a consensus of the 

structural reliability engineering profession concerning the model elements to which the calculated 

probabilities are sensitive. Otherwise the engineering practice becomes open to unjustified distribution 

tail choices made for competitive reasons. Moreover, a useful common knowledge bank is obtained in 

this way, not the least with respect to the choice of distributions of the epistemic uncertainties. Clearly, 

for distributions based on sample data, the knowledge bank should be subject to revision as more data 

and better quality data become available. 
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To overcome the problem of arbitrary distribution choice, probabilistic codes are developed by a proc-

ess of calibration to accepted practice, whereby it becomes reasonable at least to use probability as a 

means of comparison and adjustment. It even makes sense to use the standardized distributions in mod-

els for optimal decision-making, provided the intangible utility values are also calibrated so that the 

accepted practice on the average is the optimal practice. 

 

In recent years considerable attention has been paid to developing performance-based engineering, par-

ticularly with regard to design of buildings and other structures to resist earthquake forces (Cornell and 

Krawinkler 2000). Central to this approach is the promise of computing risk associated with various 

structural performance requirements, including those of rare events such as extreme damage and col-

lapse. In the rapidly developing literature in this field, little attention is paid to such issues as the tail 

sensitivity problem or the characterization of uncertainties inherent in the modeling and estimation. 

While this paper may not contribute to solving this problem, it raises a concern and hopefully sheds 

some light on the underlying issues and problems of an approach that relies on values of probabilities 

for rare events. 

3.3. Parameter uncertainty 

The parameters )σ,( εgΘ  of the physical sub-models and fΘ  of the distribution sub-model are estimated 

by statistical analysis of observed data. Specifically, )σ,( εgΘ  are estimated based on pair-wise observa-

tions of Y  and X , and fΘ  are estimated based on observations of X . The preferred approach is the 

Bayesian analysis, which allows incorporation of prior information on the parameters, possibly in the form 

subjective expert opinion. The uncertainty in the parameter estimates is directly related to the amount and 

quality of the available information. By amount, we refer to the size of the available samples of observa-

tions. By quality, we refer to the accuracy in the observations. Any measurement error present in the ob-

servations deteriorates the information content and, hence, the quality of the data. The quality also refers 

to the information content in the prior. This kind of analysis is now routine and we will not discuss further 

details. 

 

Parameter uncertainties are strictly epistemic because the uncertainty in the estimation decreases and may 

asymptotically vanish with increasing quantity and quality of the available observational data. 

3.4. Final remark 

The above discussions may raise the philosophical question whether there is any aleatory uncertainty at 

all. Clearly this question does not make sense outside the model universe. From a linguistic point of 

view, all uncertainties are the same as lack of knowledge. However, as explained above, it is convenient 

within a probabilistic model (mathematical statistical model, in particular) to introduce the categoriza-

tion of uncertainties into aleatory and epistemic. Thus, within the model universe, the word epistemic 

assumes a more narrow meaning than just lack of knowledge.  

  

Perhaps it is just a matter of time before it becomes sufficient to consider models that do not need the 

aleatory category, assuming that we learn about all missing variables and exact forms of models. Per-

haps even basic variables can be explained through exact predictive models. In such a world, if uncer-

tainty exists, it will only be epistemic. This utopian world, however, is too far from the reality of engi-

neering practice today. The advantage of separating the uncertainties into aleatory and epistemic is that 

we thereby make clear which uncertainties can be reduced and which uncertainties are less prone to 

reduction, at least in the near-term. This categorization helps us in allocation of resources and in devel-
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oping engineering models. Furthermore, better understanding of the categorization of uncertainties is 

essential in order to properly formulate risk or reliability problems. For example, epistemic uncertain-

ties may introduce dependence among the estimated performances of the components of a system, and 

non-ergodic uncertainties may introduce dependence among a sequence of events in time or space. In 

practice, these dependences are often neglected due to improper treatment of the uncertainties. The ex-

amples in the following section demonstrate the influences of such effects.   

 

4. Influence of uncertainties 

In this section we present two examples to demonstrate the influence of uncertainties on reliability as-

sessment. The first example demonstrates the influence of statistical dependence introduced by epis-

temic uncertainties among the components of a system. The second example demonstrates the influence 

of non-ergodic uncertainties, both epistemic and aleatory, in a time-variant reliability problem.   

4.1. System reliability 

Consider a k-out-of-N system. Such a system survives if at least k out of N components survive, where 

Nk ≤≤1 . The extreme values 1=k  and Nk =  respectively define the special cases of parallel and series 

systems. For the sake of simplicity, we assume the components have statistically independent and identi-

cally distributed capacities represented by the random variable 1X , and also statistically independent and 

identically distributed demands represented by the random variable 2X . In essence, the component ca-

pacities and demands are random realizations from the distributions of 1X  and 2X , respectively. Thus, 

the components have identical limit-state functions defined by, 

21)( xxg −=x   (2) 

with }0)({ ≤Xg  indicating the failure event. We further assume that 1X  and 2X  are normal random 

variables with unknown means 1µ  and 2µ  and known standard deviations 1σ  and 2σ , respectively. Ac-

cording to the terminology introduced earlier in this paper, ),( 21 XX=X  are basic random variables and 

)µ,µ( 21=fΘ  are distribution parameters to be estimated. Suppose the available information for estimat-

ing 1µ  and 2µ  are sample observations of size n  of the capacity and demand values with respective sam-

ple means 1x  and 2x . It is convenient to adopt Bayesian modeling, in which 1µ  and 2µ  are considered as 

realizations of Bayesian random variables 1M  and 2M . Assuming independence of 1M  and 2M  and 

diffuse priors, these imply posterior distributions of 1M  and 2M , which are normal with means 1x  and 

2x  and standard deviations n/σ1  and n/σ2 , respectively.  

 

As described earlier, the statistical uncertainty in the distribution parameters 1µ  and 2µ  is epistemic in 

nature. Since the component capacities and demands are identically distributed, this uncertainty is shared 

by all the components of the system. Hence, the statistical uncertainty inherent in the estimation of the 

distribution parameters introduces statistical dependence among the estimated states of the system compo-

nents. To investigate this effect, we proceed as follows: 

 

Observe that, for the case of linear limit-state function and normal random variables, the conditional reli-

ability index of a typical component for given values of 1µ  and 2µ  is 

2
2

2
1

21
21

σσ

µµ
)µ,µ(β

+

−
=   (3) 
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Since 1M  and 2M  are normally distributed posterior to obtaining the data, it can be easily shown that 

),(β 21 MMB =  has the normal distribution with mean 2
2

2
121 σσ/)(µ +−= xxB  and standard deviation 

nB /1σ = . It is evident that the uncertainty in the reliability index in account of the statistical uncer-

tainty is directly related to the size of observation samples. The probability of failure of the component 

conditioned on the distribution parameters is given by [ ])µ,µ(β)µ,µ( 2121 −Φ=fp . Viewing this as a 

transformation between β  and fp , one easily determines that the distribution of the (Bayesian) random 

failure probability ),( 21 MMpP ff = , reflecting the effect of the statistical uncertainty, is 
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p
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npf
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  (4) 

Figure 1 shows plots of the distributions of B  and fP  for 3µ =B  and 10=n  and 30. The so-called pre-

dictive failure probability, denoted fp~ , is the mean of this distribution. Its value can be obtained by either 

of the following formulas: 

∫

∫ ∫

=

=

+∞

∞−

+∞

∞−

1

0

212121

d)(

µdµd)µ()µ()µ,µ(~
21

pppf

ffpp

fp

MMff

  (5) 

The corresponding predictive reliability index is )~1(β
~

fp−Φ= . Plots of β
~
 and fp~  for 3µ =B  and as 

functions of the sample size n  are shown in Figure 2. Note that with increasing n  the predictive reliability 

index asymptotically approaches 3µ =B  and the predictive failure probability approaches =−Φ )µ( B  

0.00135, the limiting values without statistical uncertainty. Increasing statistical uncertainty (decreasing 

sample size) tends to increase the predictive failure probability and decrease the predictive reliability in-

dex. 

 

We now consider the system failure probability. Even though the component states are statistically inde-

pendent, statistical dependence among their probability estimates is present due to sharing of the uncertain 

distribution parameters 1M  and 2M  by all components. Thus, to properly handle this dependence, we 

must first evaluate the conditional probability of the system failure given the distribution parameters, and 

then integrate over all possible values of the parameters. Using the complementary binomial cumulative 

probability function, the conditional probability of failure is 

( ) ( )[ ] ( )[ ] jN

f

j

f

N

kNj

sf pp
jNj

N
p

−

+−=

−
−

= ∑ 2121

1

21 µ,µ1µ,µ
)!(!

!
µ,µ   (6) 

Using the distribution of ),( 21 MMpP ff =  given in (5), the predictive system failure probability is ob-

tained as 

ppfpp
jNj

N
p

fP
jNj

N

kNj

sf d)()1(
)!(!

!~
1

0 1
∫ ∑

−

+−=

−
−

=   (7) 
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As mentioned earlier, when n  approaches infinity, )µ(~
Bfp −Φ= . The corresponding value of the system 

failure probability is obtained by substituting this value in place of )µ,µ( 21fp  in (6). We denote this 

value as ∞→nsfp ,
~ . Figure 3 shows plots of the ratio ∞→nfsf pp ,

~/~  for series systems )( Nk =  with 3µ =B  

and for parallel systems )1( =k  with 2µ =B , both systems having 1 to 5 components. It can be seen that 

increasing statistical uncertainty (decreasing sample size n ) increases the predictive failure probability for 

both systems. For series systems, the effect is relatively modest. For parallel systems, the increase in the 

failure probability can be by orders of magnitude. Figure 4 shows the same ratio for systems with 5=N  

components with varying k  for 10=n  and 30 and 3µ =B . As can be seen, the influence of the statistical 

uncertainty increases with increasing redundancy of the system (decreasing k ). This is because the posi-

tive correlation arising from statistical uncertainty effectively reduces the redundancy of the system.  

4.2. Time-variant reliability 

Consider a structure subjected to repeated applications of earthquake loads. Each earthquake produces a 

stochastic ground motion at the site of the structure. Following common practice, we use a single measure 

(e.g., the peak ground acceleration) to characterize the intensity of the motion. Let S  denote this intensity 

measure and assume, for a given earthquake of random characteristics, it has a lognormal distribution with 

parameters Sλ  and Sζ . Also let ν  denote the mean rate of earthquakes per year. If the occurrence of 

earthquakes are assumed to follow a Poisson process, then ]}ζ/)λ(ln[νexp{1)( SSssh −−Φ−−=  is the 

annual seismic hazard function for the site. Let R  denote the capacity of the structure (for any perform-

ance criterion of interest) expressed  in terms of the ground motion intensity measure, and assume it has 

the lognormal distribution with parameters Rλ  and Rζ . In general, there are errors in modeling the struc-

ture. Furthermore, a single intensity measure cannot fully characterize the effect of a stochastic motion on 

the structure. To account for these errors, we adopt the limit-state function 

21 lnln),,( ε+−ε+=ε srsrg   (8) 

where r  and s  are realizations of R  and S , respectively, and 1ε  and 2ε  are model error terms, the for-

mer reflecting errors in modeling the structure (model form error) and the latter reflecting the effect of the 

stochastic ground motion (missing variables). We assume the model errors are normally distributed with 

zero means and standard deviation 1σ  and 2σ , respectively. Furthermore, we assume R , S , 1ε  and 2ε  

are statistically independent. It follows from these assumptions that g  has the normal distribution with 

mean SR λλ −  and variance 2
2

22
1

2 σζσζ +++ SR . The set of distribution parameters  ,ζ,λ,ζ,λ,ν( SSRR=Θ  

)σ,σ 21  are, of course, subject to statistical uncertainty and so we let )(θΘf  denote their posterior joint 

distribution. 

 

For a given earthquake, no distinction between the uncertainty types needs to be made, and the predictive 

failure probability is given by  

∫














σ+ζ+σ+ζ

λ−λ
−Φ=

θ

Θ θθ d)(~
2

2

22

1

2
fp

SR

SR
f   (9) 

The product fp
~µ ν , where νµ  denotes the mean of ν , represents the mean rate of earthquake-induced 

failures per year. This observation has lead many investigators (see Der Kiureghian 2005 for several refer-

ences) to assume that the failure events are Poisson and therefore the following expression for the failure 

probability in ),0( t  has been used: 
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( )tpP fPsnf
~µexp1

~
ν, −−=   (10) 

However, due to the presence of non-ergodic uncertainties, the failure events in time are not statistically 

independent and, therefore, cannot constitute Poisson events. More specifically, the aleatory or epistemic 

uncertainties in R  and 1ε  as well as the epistemic uncertainties in Θ  are shared by all earthquake events, 

while the aleatory uncertainties in S  and 2ε  are renewed at each earthquake. To overcome this depend-

ence, we note that the conditional failure events given rR = , e=1ε  and θΘ =  are Poisson with the 

mean rate ]σζ/)λ(ln[ν 2
2

2 +−+−Φ SSer . Hence, the predictive failure probability over the time interval 

),0( t  is given by   

θθΘ

θ

ddd)()()(
σζ

λln
νexp1

~
1ε

,,
2
2

2
erfefrft

er
P R

er S

S
f ∫ 




























+

−+
−Φ−−=   (11) 

To investigate the difference between the approximation in (10) and the exact result in (11), we assume 

the following distributions and parameter values: ν  is lognormal with varying mean νµ  and 50% coeffi-

cient of variation, 294.0ζ =R , Rλ  is normal with a zero mean and variance nR /ζ
2 , 472.0ζ =S , Sλ  is nor-

mal with mean 0.1−  and variance nS /ζ
2 , 3.0σ1 =  and 5.0σ2 = , where n  is a measure of the quality of 

statistical information (analogous to sample size). Figure 5 shows plots of Psn,

~
fP  and fP

~
 as a function of 

tνµ  for 10=n  and ∞→n . It can be seen that neglecting the dependence between successive events due 

to the non-ergodic uncertainties results in an overestimation of the failure probability for large tνµ  values. 

Also, increasing statistical uncertainty (small )n  increases the failure probability estimate. The differences 

between the two results, however, are relatively insignificant. This is because the considered time-variant 

problem is analogous to a series system problem with a random number of components. 

 

5. Conclusions 

The characterization of uncertainties into aleatory and epistemic in risk and reliability analysis and in 

codified or performance-based design is discussed. The distinction between aleatory and epistemic un-

certainties is determined by our modeling choices. The distinction is useful for identifying sources of 

uncertainty that can be reduced, and in developing sound risk and reliability models. It is shown that for 

proper formulation of reliability, careful attention should be paid to the categorization (epistemic, alea-

tory, ergodic or non-ergodic) of uncertainties. Failure to do so may result in underestimation or overes-

timation of failure probability, which can be quite significant (orders of magnitude) in certain cases. 

 

References 

Cornell, C. A., and Krawinkler, H. (2000). Progress and challenges in seismic performance assessment. 
PEER Center News, Spring 2000. http://peer.berkeley.edu/news/2000spring/index.html 

Box, G.E.P., and G.C. Tiao (1992). Bayesian inference in statistical analysis. Addison-Wesley, Read-
ing, Mass. 

Der Kiureghian, A. (1989). Measures of structural safety under imperfect states of knowledge. J. Struc-
tural Engineering, ASCE, 115:1119-1140. 

Der Kiureghian, A. (2005). Non-ergodicity and PEER’s framework formula. Earthquake Engineering 
and Structural Dynamics, 34:1643-1652. 

Ditlevsen, O. (1994). Distribution arbitrariness in structural reliability. Structural Safety & Reliability, 
G. Schuëller, M. Shinozuka and J. Yao, Eds., Balkema, Rotterdam, The Netherlands, Proceedings of 
ICOSSAR’93, 1241-1247. 



 12 

Ditlevsen, O. and H. O. Madsen (1989). Proposal for a code for the direct use of reliability methods in 
structural design. JCSS Working Document, 1989. 

Ditlevsen, O., and H.O. Madsen (1996). Structural reliability methods. J. Wiley & Sons, New York, 
NY. 

Faber, M. H. (2005). On the treatment of uncertainties and probabilities in engineering decision analy-
sis. J. Offshore Mechanics and Arctic Engineering, 127:243-248. 

Paté-Cornell, M. E. (1996). Uncertainties in risk analysis: six levels of treatment. Reliability Engineer-
ing and System Safety, 54:95-111. 

Vrouwenvelder, A.C.W.M. (2003). Uncertainty analysis for flood defense systems in the Netherland. 
Proceedings, ESREL, 2003. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Distributions of reliability index (left) and failure probability (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Predictive reliability index (left) and failure probability (right) as functions of sample size. 
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Figure 3: Influence of statistical uncertainty on series (left) and parallel (right) systems. 
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Figure 4: Influence of statistical uncertainty 

on k-out-of-N system. 
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Figure 5: Influence of non-ergodic uncertain-

ties on time-variant reliability 
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