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System risk estimates for decision-making

* Bridge network

rupture on the fault

i Component risk estimates 1 1 System risks considered for decision-making -

= Component fragilities = Likelihood of disconnection

Duration of disconnection
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Challenges in system reliability

= Complexity of system event description

Difficult to identify cut sets or link sets
Boolean description ~ lengthy; inconvenient to handle
Makes system reliability analysis complex as well

= Statistical dependence between components

“Environment dependence” or “common source effects”

Expensive or infeasible to provide complete information on
dependence ~ theoretical bounding formulas

= |ncomplete information
Not very flexible in incorporating various information

= Statistical inference for decision-making



Existing system reliability methods

= Theoretical bounding formulas (Ditlevsen 1979)
PﬁZmax( ZP 0J< P(U Ekj_PﬁZ(P maxP)

= FORM approximation (Hohenbichler and Rackwitz 1983)

P(Eseries) :1—CD(B, R) I:)(Eparallel) = (D(—B, R)
= Monte Carlo simulations
P(Eqyser) = | (X)X =

= L|LP bounds method (Song and Der Kiureghian 2003)
— generalized to a (MSR)
method




Matrix-based Formulation

= Matrix-based formulation of system failure:

P(Ey)=c'p

* Example: P(EE,UE;)=p,+p,+ Ps+ P, + Ps

C.

p-”

- 1 1 1 1 0 0 0]
[0, P, Ps Ps Ps P Pr Pl

" vector
~ describes the system event of interest

" vector
~ likelihood of component joint failures



ldentification of event vector, C

= Matrix-based event operations:

E

ct =1-cF

CEl"'En — El.*CEZ.*"'.*CEn
¢ =1 (1-c®).*(1-c®).* *(1-c™)

Efficient and easy to implement by matrix-based
computing languages, e.g. Matlab®, Octave

Can construct directly from event vectors of components
and other system events

Can develop/use problem-specific algorithms to identify
event vectors



Computation of probability vector, p

* [terative matrix-based procedure for
statistically independent (s.i.) components

Ppy = Pl 1- Pl]T

_ b
Priy = Pri-y h } fori=1,...,n

p[l—l] '(1_ P.)
1500
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Statistical dependence b/w components

By total probability theorem,

P(E,ys) = | P(Eyys 1X) () dx
= chTp(x) f, (x)dx

— CTﬁ

Utilize of components given an outcome
of random variables X causing component dependence
e.g. Earthquake magnitude for a bridge system

Event vector c is independent of this consideration ~ no
need to construct the probability vector for new system
events



“What iIf not explicitly identified?”

= Example: approximation by Dunnett-Sobel (DS)
correlation matrix (19s55)

Z; ~N(O,R), P =niT;
Z. =1-r°U, +rX,

Z;, 1=1,...,n are conditional s.i. given X=x

Fit the given correlation matrix with a DS correlation
matrix with the least square error

Can generalize it further for better approximations

Z; ~N(0,R), p; =a;a; +bb;

Z,=1-a? —h?U, +a, X +bY



Incomplete information

= [P bounds method (Song and Der Kiureghian 2003)

minimize(maximize) c¢'p
subjectto A,p=Db,
Ap =D,
Ap<hb,

A, A,, As: event vectors for which probabilities or bounds
are available

b,, b,, b;: available probabilities or bounds

Has been successfully applied to various systems (Song and
Der Kiureghian 2003a, 2003b, 2006)



Conditional prob./importance measure

= Conditional probability Importance Measure (CIM)

P(E| Esys)
P(E,)

CIM; =P(E; | Ey,) =

= Fussell-Vesely IM
. P(Uk:CkQEiCk)

| P(Esys)

P(Esys )/P(Egys) = (c'p) / (c'P)

Once the system reliability is done, only additional task is to
find the event vector for a new system event



Appl. I: Connectivity of a transportation network

Kang, Song and Gardoni (2007)
~ ICASP10 (July); Reliability Engineering and System Safety (under review)
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Post-earthquake disconnection from the critical facility
Fragilities for bridges (Gardoni et al. 2003)
Deterministic attenuation relationship used

For given magnitude, the bridge component failures are
conditional s.l.



Appl. I: Connectivity of a transportation network
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Appl. I: Connectivity of a transportation network

Probability of Disconnection
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Appl. I: Connectivity of a transportation network

Probability of Disconnection
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Appl. 11: Damage of a bridge structural system

Song and Kang (2007) ~ ASCE EMD conference (June)
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Nielson (2005) developed analytical fragilities of bridge
components such as bearings, abutments and columns

Identified the statistical dependence between demands
Probability that at least one component fails (series system)

Performed MCS to account for component dependence



Appl. 11: Damage of a bridge structural system

* Safety Factor Fi =1In Ci —In Di

* Fragility p(LSi | ||\/|): P(Fi < Ol ”Vl)

_ P[Zi <P ||v|]
G

- ue (M)
O (IM)_

=

(CDi .CDJ-) .
(2 +C3 )2 (CE +p )2 Prouno

* Correlation

Pzz, =Pr.r =

* Fitting by DS-class corr. matrix: average of percentage error ~ 3%



Appl. 11: Damage of a bridge structural system
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Appl. Il1: Progressive failure of a truss structure

Song and Kang (2007) ~ ASCE EMD conference (June)

‘\External load , L (KN)

A=450 mm?
E = 2.0x10 8 kN/m?

5m

Member force capacities:
Ri~ N(1000, 200) pij=0.2

P /A
5m

) = HEEEEEEUEEEEEEXEEE&ﬁM

P(E.

sys
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Appl. Il1: Progressive failure of a truss structure

P(E,,.) = PIE,E,E,E,E.E; U(E,E,E,E,E.E()(E,E,E.E,(E,,)
U(E,E,E,E,EE.)(E,E - E L EsE ) U+
(El E2 E3 E4 E5 EG)(ESZ E33 E34 E35 E36 )]
il Disjoint link sets (36-11)
P(E,) = P(E,E,E,E,E;E() + P(E,E,[E,E,E.E(E,E.EE, E,,)

-+ P(E B, BB ESE Eg EqE g B Eys)

il Perfect correlation

7 systems with 6 components



Appl. Il1: Progressive failure of a truss structure

MSR
+  MCS

P(Collapse | L)
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System collapse fragility curve given abnormal load
Verified through MCS
Importance of members (components)

Sensitivity of fragility w.r.t. design parameters



Thank Youl!



