Optimal Reliability of Components of Complex Systems Using Hierarchical System Models

K. Nishijima
Institute of Structural Engineering, ETH Zurich

M. Maes
Civil Engineering Department, Schulich School of Engineering, University of Calgary

J. Goyet
Marine Division, Research Department, Bureau Veritas

M.H. Faber
Institute of Structural Engineering, ETH Zurich
Background

Engineered systems such as:

- electricity/water distribution systems
- structural systems

are complex in the sense that:

- components are functionally/geographically interrelated
- different levels of analyses provided by different experts are required.
Ship hull structure is an example:

- components/(sub-)structures are interrelated:
 - joints
 - plates
 - tanks

- different levels of analyses are required such as:
 - yielding, fracture and corrosion of materials
 - structural analysis
 - consequence analysis.
Objective

To develop a framework for optimization of engineered systems.

- What are effectively designed are components.
- Acceptance criteria are often given for system performance and
- system performance is our direct concern.
Objective

The bridge between component and system performance needs to be developed.
The proposed framework relies on the typical characteristics that

- individual components are standardized
- components are hierarchically interrelated

and takes basis in the fact that system performance depends on

- way of interrelation between components
- reliability of components.
Approach

- Modelling of complex systems by Bayesian probabilistic Networks
- Consideration of a-priori given acceptance criteria for system performance
- Setting up an optimization problem
Bayesian probabilistic network:

• is a graphical representation of probabilistic structure of variables by nodes and arrows

• is quantitatively characterized by conditional probability tables

• can provide e.g. expected value, conditional probability

Object-oriented Bayesian probabilistic network:

• is useful when a structure has many identical (sub-) structures/components.
Hierarchical modeling by use of Bayesian probabilistic network

- Component level
Hierarchical modeling by use of Bayesian probabilistic network

- Sub-structure level
Hierarchical modeling by use of Bayesian probabilistic network

- Structure level
On Bayesian probabilistic networks:

expected total cost is written as:

$$u = f(x_1, x_2, ..., x_N)$$

where x_i is design variable for components, e.g. component reliability.

acceptance criteria for system performance are written as:

$$g_j(x_1, x_2, ..., x_N) \leq c_j$$
Optimization of component reliability can be reduced to be a standard constrained optimization problem:

Minimize \[u = f(x_1, x_2, \ldots, x_N) \]

such that \[g_j(x_1, x_2, \ldots, x_N) \leq c_j \quad (j = 1, 2, \ldots, M) \]

→ solving the optimization problem with commonly available techniques, e.g. Microsoft Excel and Hugin.
Optimization of reliability of welded joints in ship hull structure

Acceptance criterion: probability of failure of ship hull < 10^{-3}/yr

Objective function: expected total cost
Hierarchical structure of the ship hull:

- Hull structure
- Tanks
- Components

Hull → Ballast tank 1 → Deck plate
- Ballast tank 2
- Cargo tank 1
- Bottom plate
- Side plate
- Tank partition
Corresponding BPN’s:
Conditional probability table

<table>
<thead>
<tr>
<th>CarGoCarGoF</th>
<th>Fail</th>
<th>Survive</th>
<th>Fail</th>
<th>Survive</th>
</tr>
</thead>
<tbody>
<tr>
<td>DecpPlate 1</td>
<td>0.4</td>
<td>0.5</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Minor</td>
<td>0.5</td>
<td>0.45</td>
<td>0.1</td>
<td>0.19</td>
</tr>
<tr>
<td>Major</td>
<td>0.1</td>
<td>0.05</td>
<td>0.1</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Objective function: $u = f(x_1, x_2, ..., x_{10})$
Constraints: $g(x_1, x_2, \ldots, x_{10}) \leq c$
Excel platform

ActiveX

Solver Add-in

iPlan (Straub and Faber 2006)

Acceptance criteria for system reliability

Minimized expected total cost

Target component reliabilities

Problem Setting

Framework

Example

Conclusion

27.03.2007
• Use of BPN

Engineered system can be hierarchically modelled by use of BPN and especially by object-oriented BPN.

• Standard constrained optimization

 - Objective function: expected total cost
 - Constraints: acceptance criteria for system performance
 - Variables: component reliability

• Use of commonly available techniques/algorithms

 For example, Hugin and Microsoft Excel.