Safety acceptance criteria for existing structures

Dimitris Diamantidis
University of Applied Sciences, Regensburg

Paolo Bazzurro
AIR Worldwide Corporation, San Francisco

March 2007
Ice-stadium Bad Reichenhall, January 2006
Earthquake damage, Turkey 1999
Bridge Inspection
Building Inspection after earthquake
When is reassessment of an existing structure necessary?

- Deviations from original design
- Doubts about safety
- Adverse inspection results
- Change of use
- Lifetime extension
- Inadequate serviceability
Typical questions

- What type of inspections are necessary?
- What analyses shall be performed?
- What is the future risk in using the structure?
- What is the acceptable risk?
Safety Verification

- Computation of reliability (index)
- Comparison with acceptance criteria
- Implementation of safety measures
Guidelines (Examples)

- ISO TC 98
- SIA 462 (Switzerland)
- Danish Technical Research Council
- ACI 437R
- JCSS (Joint Committee of Structural Safety)
- Dutch Recommendations
Experienced risk for various structures
Our Approach

1. Review of current criteria for existing structures in seismic regions in the USA (performance-based design)
2. Interpretation of European standards/practice
3. Analysis of the recommendations given by the Joint Committee on Structural Safety (JCSS)
4. Conclusions from our industrial experience in various projects (buildings, offshore structures, tunnels, etc.)
Probability Based Design
Performance objectives

<table>
<thead>
<tr>
<th>Performance Level NEHPR (ATC, 1996)</th>
<th>Performance Level Vision 2000</th>
<th>Short Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational</td>
<td>Fully Functional</td>
<td>No significant damage to structural and non-structural components</td>
</tr>
<tr>
<td>Immediate Occupancy</td>
<td>Operational</td>
<td>No significant damage to structure; non-structural components are secure and most could function if utilities available</td>
</tr>
<tr>
<td>Life Safety</td>
<td>Life Safety</td>
<td>Significant damage to structural elements; non-structural elements are secured but may not function</td>
</tr>
<tr>
<td>Collapse Prevention</td>
<td>Near Collapse</td>
<td>Substantial structural and non-structural damage; limit margin against collapse</td>
</tr>
</tbody>
</table>
EQ Probability levels

<table>
<thead>
<tr>
<th>EQ -Level</th>
<th>Event</th>
<th>Annual Exceedance Probability</th>
<th>Mean Return Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Frequent</td>
<td>4%</td>
<td>25</td>
</tr>
<tr>
<td>II</td>
<td>Occasional</td>
<td>1.4%</td>
<td>72</td>
</tr>
<tr>
<td>III</td>
<td>Rare</td>
<td>0.125% - 0.4%</td>
<td>250 - 800</td>
</tr>
<tr>
<td>IV</td>
<td>Max Considered</td>
<td>0.04% - 0.125%</td>
<td>800 - 2500</td>
</tr>
</tbody>
</table>
PBD criteria

\[p_E \cdot p_{NP|E} < p_A \]

\(p_E \) : probability of event

\(p_{NP|E} \) : conditional probability of no performance given event

\(p_A \) : acceptable probability
PBD criteria (new structure)

\[p_E \cdot p_{NP|E} < p_A \]

- \(p_E \): 2% in 50 years
- \(p_{NP|E} \): 10%
- \(p_A \): \(4 \times 10^{-5} \) per year
PBD criteria (old structure)

\[p_E \cdot p_{\text{NP}|E} < p_T \]

- \(p_E \): 4\% in 50 years
- \(p_{\text{NP}|E} \): 25\%
- \(p_T \): \(2 \times 10^{-4} \) per year (5 times larger)
Limit State Design
Reliability Index

$$\beta = - \Phi^{-1} (p_F)$$

p_F: is the probability of exceeding limit state condition (here failure)
Φ^{-1}: is the inverse Gaussian distribution
JCSS Recommendations for Existing Structures

• Preface
• Part 1: General (Guidelines, Codification)
• Part 2: Reliability Updating
• Part 3: Acceptability Criteria
• Part 4: Examples and case studies
• Annex: Reliability Analysis Principles
JCSS (2001) proposal

\[\beta_E = \beta_N - 0.5 \]

- \(\beta_E \): acceptable reliability index for an existing structure
- \(\beta_N \): target reliability index for a new structure
Target Reliability (1 year ref. Period)

<table>
<thead>
<tr>
<th>Cost of safety</th>
<th>Consequences</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minor</td>
</tr>
<tr>
<td>Large</td>
<td>2.6</td>
</tr>
<tr>
<td>Normal</td>
<td>3.2</td>
</tr>
<tr>
<td>Small</td>
<td>3.7</td>
</tr>
</tbody>
</table>
Application of FORM

\[T \approx 1 / \Phi(\alpha \beta) \]

- \(T \) is the mean return period
- \(\Phi() \) is standard normal integral
- \(\alpha \) is the sensitivity factor
- \(\beta \) is the target reliability index
Various other proposals

Explicit targets:
• CSA (Canadian Standards Association, by D. Allen):
• Belgian research associations (L. Schueremans)

Procedures (optimization)
• Ang et al., Frangopol et al., Ellingwood, Rackwitz, etc
Industrial experience

- Offshore structures
- Bridges
- Nuclear structures
- Office buildings
- Tunnels
- Residencial buildings

- Waves, wind
- Live load
- Earthquake
- Live load
- Fire
- Flood, snow
EXISTING OFFSHORE STRUCTURES

(North Sea, Adriatic Sea, Gulf of Guinea, Gulf of Mexico)
Steel Jacket Structure

25 years old platform

- Foundation (pile capacity limit state)
- New data available
- Reliability index is higher compared to design phase
Steel bridges

Typical limit states

- extreme load
- Fatigue

Which measures are necessary in order to meet acceptance criteria (residual life time 20 years)?
Bridges: Safety measures

1. Load truncation
2. Weld toe grinding
3. Load truncation + weld toe grinding
R.C. Buildings in Germany

- Office building
- Concrete construction
- 70 years old
- Reduced load in order to satisfy minimum safety
Existing road tunnels in Europe

- Several accidents in Europe
- Hazardous goods
- Bidirectional traffic
- Increasing traffic volume
- Large consequences
 - Upgrading of existing tunnels?
road tunnel in Greece

- Korinth-Tripolis motorway.
- total length of 1365 m with longitudinal grading 1%.
- 20 years old
- Bidirectional traffic
- Safety evaluation since it does not fulfill EU recommendations
Flood in Prague, 2002
Flood statistics, Prague

Discharge [m³/s]
Conclusions

- A lower safety level compared to a new structure is acceptable
- Various criteria have been proposed in the technical literature
- Acceptance criteria depend on cost of safety, consequences of failure, desired residual lifetime
- Increase of acceptable p_F by a factor of 2 to 10 is recommended
Stone bridge, Regensburg 860 years old